1 A ring is moving up and down a vertical pole. The displacement, $s \mathrm{~m}$, of the ring above a mark on the pole is modelled by the displacement-time graph shown in Fig. 1. The three sections of the graph are straight lines.

Fig. 1
(i) Calculate the velocity of the ring in the interval $0<t<2$ and in the interval $2<t<3.5$.
(ii) Sketch a velocity-time graph for the motion of the ring during the 4 seconds.
(iii) State the direction of motion of the ring when
(A) $t=1$,
(B) $t=2.75$,
(C) $t=3.25$.

2 Fig. 2 shows an acceleration-time graph modelling the motion of a particle.

Fig. 2

At $t=0$ the particle has a velocity of $6 \mathrm{~m} \mathrm{~s}^{-1}$ in the positive direction.
(i) Find the velocity of the particle when $t=2$.
(ii) At what time is the particle travelling in the negative direction with a speed of $6 \mathrm{~m} \mathrm{~s}^{-1}$?

3 A cyclist starts from rest and takes 10 seconds to accelerate at a constant rate up to a speed of $15 \mathrm{~m} \mathrm{~s}^{-1}$. After travelling at this speed for 20 seconds, the cyclist then decelerates to rest at a constant rate over the next 5 seconds.
(i) Sketch a velocity-time graph for the motion.
(ii) Calculate the distance travelled by the cyclist.

4 Fig. 1 is the velocity-time graph for the motion of a body. The velocity of the body is $v \mathrm{~m} \mathrm{~s}^{1}$ at time t seconds.

Fig. 1
The displacement of the body from $t=0$ to $t=100$ is 1400 m . Find the value of V.

